A Csebisev-polinomok olyan téma, amely világszerte felkeltette az emberek figyelmét. Megjelenése óta nagy érdeklődést váltott ki, és számos vita és vita tárgya volt. Akár mai relevanciája, akár történelmi hatása miatt, a Csebisev-polinomok továbbra is nagy jelentőségű kérdés az egész társadalom számára. Ebben a cikkben részletesen megvizsgáljuk a Csebisev-polinomok különböző dimenzióit és életünk különböző területeire gyakorolt hatását. Az eredetétől a populáris kultúrára gyakorolt hatásáig megvizsgáljuk, hogyan hagyott nyomot a Csebisev-polinomok a történelemben, és hogyan marad továbbra is aktuális.
A matematikában a Csebisev-polinomok olyan ortogonális polinomsorozatok, melyek kapcsolatban állnak a De Moivre képlettel, és amelyeket rekurzív módon lehet definiálni. Nevüket Pafnutyij Lvovics Csebisev orosz matematikus után kapták. Általában különbséget tesznek elsőfajú Csebisev-polinomok (jelölés Tn), illetve másodfajú Csebisev-polinomok között (jelölés Un).
A Tn, és az Un Csebisev-polinomok n-ed fokúak, és bármelyik fajta Csebisev-polinomok sorozata polinomsorozatot alkot.
A Tn Csebisev-polinomok a lehető legnagyobb vezető együtthatóval rendelkeznek, figyelembe véve azt a tényt, hogy abszolút értékük a intervallumon kötve van az 1 által.
A Csebisev-polinomok fontos szerepet játszanak a közelítő módszerek elméletében, mivel az elsőfajú Csebisev-polinomok gyökeit, melyeket Csebisev-csomópontoknak is hívnak, csomópontokként használják a polinomiális interpolációnál. Az így kapott interpolációs polinom minimalizálja a Runge-hatásból származó problémát.
A differenciálegyenletek területén a Csebisev-differenciálegyenletek megoldásaként találunk rájuk:
és
Az első egyenletből kapjuk Tn-t, míg a másodikból Un-t. Ezek az egyenletek a Sturm-Liouville differenciálegyenletek speciális esetei.
Definíciók
Az elsőfajú Csebisev-polinomokat a következő rekurenciás összefüggés definiálja:
A megszokott generátorfüggvény Tn-re:
Az exponenciális generátorfüggvény:
A kétdimenziós potenciálelmélet területén releváns generátorfüggvény:
A másodfajú Csebisev-polinomokat a következő rekurenciás összefüggés definiálja:
A megszokott generátorfüggvény Un-re:
Az exponenciális generátorfüggvény:
Kapcsolatok az első- illetve másodfajú Csebisev-polinomok között
Az első- illetve másodfajú Csebisev-polinomok megfelelnek a Lucas sorozat egy kiegészítő párjának Ṽn(P,Q) és Ũn(P,Q), P = 2x és Q = 1 paraméterekkel:
Két kölcsönös rekurenciás összefüggést is kielégítenek:
Az első- illetve másodfajú Csebisevpolinomokat a következő összefüggések is összekapcsolják:
Explicit kifejezések
A Csebisev-polinomok meghatározásának különböző megközelítései különböző explicit kifejezésekhez vezetnek, mint például:
ahol a szummajel alapja azt jelzi, hogy a j = 0 hozzájárulását felezni kell, ha megjelenik.
(1995) „A Note on Some Peculiar Nonlinear Extremal Phenomena of the Chebyshev Polynomials”. Proceedings of the Edinburgh Mathematical Society38, 343–355. o. DOI:10.1017/S001309150001912X.